Stable Diffusion 部署教程~超详细

1.前言:

Stable Diffusion比Disco Diffusion更快,于是从git上拉取了项目尝试本地部署了,记录分享一下过程~
这里是官网介绍:https://stability.ai/blog/stable-diffusion-public-release

图片[1]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

效果还是杠杠的

2.必要前提:

科学上网。
显卡的显存需要足够大,至于多大没看到哪有说,反正6g绝对不行

3.部署前准备:

本地化部署运行虽然很好,但是也有一些基本要求

(1)需要拥有NVIDIA显卡,GT1060起,显存4G以上。(已经不需要3080起,亲民不少)

(2)操作系统需要win10或者win11的系统。

MacOS平台本地化请见《如何在mac电脑上运行stable diffusion来做AI绘画》

(3)电脑内存16G或者以上。

(4)最好会魔法上网,否则网络波动,有些网页打不开,有时下载很慢。

(5)耐心,多尝试,多搜索。这个教程我已经重复过2次,因此很多问题基本上都踩坑并写出来了。所以请放心,能跑通的。

我的电脑配置供大家参考,Win10,I7,NVIDIA GT1050 4G,16G

生成一张20step的图大概20-30s(若使用更高性能的电脑,生成速度更快。)

4.使用的项目Stable diffusion WebUI项目

Stable diffusion大家都知道了,是当前最多人使用且效果最好的开源AI绘图软件之一,属于当红炸子鸡了。

不过,stable diffusion项目本地化的部署,是纯代码界面,使用起来对于非程序员没那么友好。

而stable diffusion webui,是基于stable diffusion 项目的可视化操作项目。

通过可视化的网页操作,更方便调试prompt,及各种参数。

同时也附加了很多功能,比如img2img功能,extra放大图片功能等等。

图片[2]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

 

因此stable diffusion webui项目是很多人部署到本地的首选。

我们本教程就是以stable diffusion webui项目为例来操作的。

二、电脑环境配置

1.安装miniconda

这个是用来管理python版本的,他可以实现python的多版本切换。

下载地址:https://docs.conda.io/en/latest/miniconda.html

图片[3]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

安装时按默认的一路next就行。

2.用管理员权限打开miniconda,输入conda -V 弹出版本号即为正确安装

图片[4]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

图片[5]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

3.配置库包下载环境,加快网络速度(替换下载库包地址为国内的清华镜像站)

执行下面

conda config --set show_channel_urls yes

生成.condarc 文件

在我的电脑/此电脑-C盘-users-你的账号名下用记事本打开并修改.condarc文件。(如我的路径是C:\Users\Administrator。)

把下面的内容全部复制进去,全部覆盖原内容,ctrl+s保存,关闭文件。

channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

运行conda clean -i 清除索引缓存,以确保使用的是镜像站的地址。

4.创建python 3.10.6版本的环境

运行下面语句,创建环境

conda create --name lmd python=3.10.6

系统可能会提示y/n, 输入y,按回车即可。
显示done,那就完成了。

在你的C:\ProgramData\Miniconda3\envs\lmd已经创建了一个新的项目。

5.激活环境

输入conda activate lmd 回车。

6.升级pip,并设置pip的默认库包下载地址为清华镜像。

每一行输入后回车,等执行完再输入下一行,再回车。

python -m pip install --upgrade pip
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

不报错就是完成了。

7.安装git用来克隆下载github的项目,比如本作中的stable diffusion webui

前往git官网https://git-scm.com/download/win

图片[6]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

下载好后,一路默认安装,next即可。

开始菜单找到git cmd。
打开并输入下面指令。

git --version

查看git的版本,显示了版本号即安装成功。

图片[7]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

8.安装cuda

cuda是NVIDIA显卡用来跑算法的依赖程序,所以我们需要它。

打开NVIDIA cuda官网,https://developer.nvidia.com/cuda-toolkit-archive(这里有人可能会打不开网页,如果打不开,请科学上网。)

你会发现有很多版本,下载哪个版本呢?

图片[8]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

回到一开始的miniconda的小窗,输入nvidia-smi,查看你的cuda版本

图片[9]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

比如我的是12.1的版本,我就下载12.1.0的链接

下载完后安装,这个软件2个G,可以安装在c盘以外的地方。比如D盘。

好了,完成这步,电脑的基础环境设置终于完事了。

下面开始正式折腾stable diffusion了。

注意:如果提示此命令nvidia-smi,非内部命令时,按以下操作

把此路径:C:\Program Files\NVIDIA Corporation\NVIDIA NvDLISR,放入到环境变量中显卡所在路径:

环境变量位置:

图片[10]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

图片[11]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

三、stable diffusion环境配置

1.下载stable diffusion源码

确认你的miniconda黑色小窗显示的是(把stable看成是lmd就行)

图片[12]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

如果不是,则输入D: 按回车。

当然你也可以放在其他你想放的盘的根目录里面。

不建议放在c盘,因为这个项目里面有一些模型包,都是几个G几个G的,很容易你的C盘就满了,其他盘容量在10G以上的就都行。

再来克隆stable diffusion webui项目(下面简称sd-webui)

接着执行

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

注意,现在克隆的本地地址,就是下面经常提到的“项目根目录”。比如,我的项目根目录是D:\stable-diffusion-webui

2.下载stable diffusion的训练模型

地址:https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/tree/main

点击file and versions选项卡,下载sd-v1-4.ckpt训练模型。

(需要注册且同意协议,注册并同意协议之后即可下载)

图片[13]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

注:这个模型是用于后续生成AI绘图的绘图元素基础模型库。

后面如果要用waifuai或者novelai,其实更换模型放进去sd-webui项目的模型文件夹即可。

我们现在先用stable diffusion 1.4的模型来继续往下走。

3.更改训练模型名称

下载好之后,请把模型更名成model.ckpt,然后放置在sd-webui的models/stable-diffusion目录下。比如我的路径是D:\stable-diffusion-webui\models\Stable-diffusion

图片[14]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

4. 安装GFPGAN

这是腾讯旗下的一个开源项目,可以用于修复和绘制人脸,减少stable diffusion人脸的绘制扭曲变形问题

地址:https://github.com/TencentARC/GFPGAN

把网页往下拉,拉到readme.md部分,找到V1.4 model,点击蓝色的1.4就可以下载。

图片[15]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

下载好之后,放在sd-webui项目的根目录下面即可,比如我的根目录是D:\stable-diffusion-webui

5.在miniconda的黑色小窗,准备开启运行ai绘图程序sd-webui

输入

cd stable-diffusion-webui

进入项目的根目录。

切记,一定要进入sd-webui的项目根目录后,才能执行下面的指令,否则会报错。

接着执行

webui-user.bat

然后回车,等待系统自动开始执行。

直到系统提示,running on local URL: http://127.0.0.1:7860

这就代表,你可以开始正式使用AI画画啦~

图片[16]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

注意:

这一步可能经常各种报错,需要耐心和时间多次尝试。

不要关闭黑色小窗,哪怕它几分钟没有任何变化。

如果提示连接错误,可能需要开启或者关闭魔法上网,再重新执行webui-user.bat命令。

如果不小心退出了黑色窗口,则重新点击:开始菜单-程序-打开miniconda窗口,输入

conda activate lmd

并进入sd-webui项目根目录再执行

webui-user.bat

四、开始作画和调试

1.在浏览器,(比如谷歌浏览器),打开http://127.0.0.1:7860(注意,不要关闭miniconda的黑色窗口)

图片[17]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

2.在prompt区域输入相关指令,比如beautiful landscape,然后点击右边的generate,即可生成第一张图片啦。

图片[18]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

3.生成的状态和操作

网页会显示进度条,miniconda的黑色小窗也会显示进度条。

等进度条跑满,就能看到你生成的图啦。

如果不想生成了,可以点击interrupt停止生成,就会返回你目前为止已经生成的图片。(比如你要生成10张,已经生成了3张,点击interrupt,就会返回3张图片)

如果点击skip,就会跳过本张图片的生成,比如你想生成10张图,现在生成第3张,点击skip,第三张就不生成了,直接开始生成第四张,最后返回9张图片。

图片[19]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

4.修改batch count数值,一次性生成多张图片

默认是1,一次性生成1张。

建议一次性生成4张或者以上,这样获得满意的图片概率会大一些,可以最多一次性生成最多100张。

图片[20]-Stable Diffusion 部署教程~超详细 - SOHUB-SOHUB

但写得越大,一次性生成花费的时间越长,假设一张图30秒,设置10张就是300s,5分钟,100张则是3000s,50分钟。

5.好了,那现在就本地化部署完毕了,可以开始愉快地玩耍啦,祝你玩得开心~

© 版权声明
THE END
喜欢就支持一下吧
点赞15 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容